2025/11/28 13:56 1/2 Ballons

Ballons

Kaufballons

Latex

• Je nach Nutzlastgewicht wählt man einen großen oder mehrere kleinere Ballons:

Größe	Durchmesser	Volumen	Eigengewicht
250er	80 cm	0.26 m³	
3 ft.	91 cm	0.4 m³	
350er	111 cm	0.73 m³	
450er	143 cm	1.54 m³	

Folie

- Weil Latex-Ballons für Float-Versuche untauglich sind, wurden bei 0x01 und 0x02 Qualatex 36"
 Microfoil-Ballons eingesetzt.
- Im Qualatex HeliumChart findet man die technischen Daten für den 'Solid-color Microfoil® Balloon 36 inch Round': 0.125 m³ Volumen. Vollgefüllt (was man zum Floaten natürlich nicht macht) soll der Ballon 66 g heben können (Spalte 'Lift Ability').
 - Eigengewicht Variante silber: 38g
 - Eigengewicht Variante weiss: 41g

Ballonselbstbau

Beim Selbstbau von Folienballons muss geeignete Folie möglichst haltbar und sicher aufeinander geschweißt werden, um ein Gasdichtes Behältnis zu bilden. Dazu einige Grundlagen (engl.), ebenfalls interessant ist dieser ausführliche Baubericht

Folie

- Ballonfolie kann man offenbar hier kaufen: balloonkits.com,
- vorher aber mit Rettungsdecken, Haushaltsfolie versuchen, Ergebnisse Dokumentieren
 - eine ältere Rettungsdecke 160 cm x 210 cm (2004), gerade hier vorhanden, wiegt 63g -> das sind 1,875 mg/cm², bei einer Dichte von 1.38 g/cm³ für PET ergibt sich eine Foliendicke von 13,6 μm, hier sind 12 μm angegeben.
 - eine weitere 160 cm x 210 cm (1999) 59.5 g -> 1.77 mg/cm²
 - ein Folieballon 36,, besteht aus 13100 cm² Folie und wiegt 38g -> das sind 2,9 mg/cm²
 - -> Folieballons bestehen aus dickerer Folie als Rettungsdecken?!
 - in mehreren Baumärkten arg konspirativ Rettungsdecken gewogen: 63g ist scheinbar gängig.
 - ein Müllbeutel (die transparenten, etwas matten von der Rolle, die so rascheln) scheint
 ~28 μm zu haben: so oft zusammengefaltet, dass sich 64 Lagen übereinander ergeben,

mit dem Messschieber 1.8 mm gemessen.

- o Der Ballon, der Baumgartner 2012 in die Stratoshäre trug, ist mit 20 μm angegeben
- es gibt 'Malerfolien' (Abdeckplanen) mit der Angabe '10 my, besonders reissfest', nach solchen würde ich mal Ausschau halten

Schweißgerät

- handelsübliches Bügeleisen
- soezielle Folienschweißgeräte
 - o angeschafft wurde ein Privileg Folienschweißgerät von ebay
 - relativ einfach aufgebaut ein Heizdraht, Gummilippe für gleichmäßiges Andrücken, durch draufdrücken auf den oberen Rahmen wird der Schweißvorgang begonnen und hört selbstständig nach ~8 Sekunden wieder auf
 - Folie ist danach immer durchtrennt, d.h. man kann mit diesem Gerät nicht mehrere "Bahnen" zusammenschweißen

Versuche

- 27.10.2014 Severin und Stefan probieren ihre Privilegien aus
 - Mit dem Schweißgerät von ebay wurde mit Gefrierbeuteln und Müllbeuteln (größere, weiße) herumexperimentiert
 - gebaut werden sollte ein "Luftkissen", viereckig
 - Vorgehen: 2 Folien aufeinanderlegen, 3 Seiten verschweißen, etwas Luft hineinbringen, letzte Seite verschweißen, danach Test im Wasserbad (Wo-ist-das-Loch-im-Fahrradschlauch-Prinzip) und Belastungstest mit je 500g
 - beide Kissen wurden zuverlässig dicht, halten auch größeren Druck mit der Hand aus, der Dauerbelastungstest wird uns zeigen, wann die Belastungsgewichte den Boden berühren, als Indikator wie schnell die Luft entweicht

Links:

- Daten von kleinen Ballons
- örtliche Ballonquelle: Ballonservice Jungk in Seelingstädt
- Ballonshop in England
- dmballooncompany
- Helium /Ballongas
- Übersicht

From:

http://www.loetlabor-jena.de/ - Lötlabor Jena

Permanent link:

http://www.loetlabor-jena.de/doku.php?id=projekte:picoflights:ballons

Last update: 2017/06/11 19:50

